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 

Abstract— Partial-hand amputees are often able to use their 
wrist when performing daily activities, but this wrist movement 
can interfere with electromyogram (EMG) pattern recognition 
of functional hand-grasps while controlling myoelectric 
prostheses. These grasp patterns also commonly require 
activation of similar muscle sets, resulting in poor 
discrimination and more frequent misclassification. In our 
recent work, we developed a classifier training paradigm and 
control system that improves real-time control of a virtual 
prosthesis capable of selecting between 4 grasps in multiple 
wrist positions. However, it is unclear if there were adverse 
effects associated with operating the virtual prosthesis in certain 
wrist positions or with attempting to select specific grasps. The 
primary purpose of this study is to determine whether the 
required wrist position or grasp affected task timeout rates, and 
to determine the number of grasp selection attempts for both a 
baseline pattern recognition controller and our proposed 
controller. We show that the specific wrist position of a given 
task does not significantly affect performance for either the 
baseline controller (p>0.575) or the proposed controller 
(p>0.459). However, while the grasp required for a task 
significantly affects a user’s ability to complete the task when 
using the baseline controller (p<0.05), this is not the case with 
the proposed controllers (p>0.429). Thus, subjects using the 
proposed controllers were more easily able to complete tasks 
involving grasps difficult to select with the baseline controller.  

I. INTRODUCTION 

By the year 2020, an estimated 650,000 individuals in the 
United States will be living with a partial-hand amputation 
[1], and currently 91% of the 18,500 upper extremity 
amputations each year occur distal to the wrist [2]. Partial-
hand amputation has a significant impact on an individual’s 
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perception of self [3] and their ability to work [4], [5] and 
perform daily tasks [6], [7].  

Recently, externally-powered prosthetic hands, or 
myoelectric prostheses, have been made available to partial-
hand amputees, such as the iLimb [8]. These devices are 
controlled by reading surface electromyographic (EMG) 
signals from electrodes embedded in the socket. Although 
prosthetic fingers and hands can restore functional hand-
grasps to partial-hand amputees, they are commonly 
controlled in the same manner as transradial prostheses, i.e. 
contracting antagonist muscle pairs to control a single grasp. 
If the user wants to select a different grasp, they must co-
contract the muscle pairs in a specific pattern to initiate a 
mode switch. 

One control method prevalent in prosthesis research uses 
pattern recognition algorithms with recorded EMG signals to 
determine the movement desired by the user [9]–[11]. In 
prosthesis applications, these can be used to predict a user’s 
intended arm movement [12], [13] or predict the movement 
of individual fingers [14]–[16] However, much of this 
research focuses on control of transradial or transhumeral 
prostheses, and as such does not address the unique 
challenges of real-time partial-hand prosthesis control. First, 
partial-hand amputees often still have an intact wrist, which 
is integral to performing many daily tasks. Unfortunately, 
moving the wrist has been shown to interfere with pattern 
recognition of grasps [17], [18]. Second, physical constraints 
on commercially-available componentry require the 
prosthesis to move through a predefined trajectory to switch 
operational grasps. Often, the prosthesis requires a hand to be 
positioned in a neutral, or fully-open, position before 
switching to a different grasp. Using this principle, we have 
created a unique pattern recognition control paradigm where 
a grasp can only be selected if the prosthetic hand is fully 
open, otherwise all grasp predictions are simply mapped to 
further close the hand in the locked-in grasp [see Fig. 1]. If 
the controller makes an errant grasp prediction, though, the 
user must open the hand fully before attempting the intended 
grasp again. These errant predictions tend to be attributed to 
two sources: the movement and position of the wrist, and the 
ability for a user to repeatedly perform a given grasp with 
minimal variation. To avoid the unintentional reopening of 
the hand and consequent user frustration, it is critical for the 
classifier to predict the proper grasp on the first attempt. In 
our previous study, we proposed a modification to the way 
data are windowed during real-time control to take advantage 
of the partial-hand prosthesis control scheme. By basing 
predictions on more data when selecting a grasp, users were 
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able to select the intended grasp more often while performing 
a virtual prosthesis task [19]. We also developed two 
customizations (see Section II A) to the pattern recognition 
processing loop aimed at preventing errant predictions during 
grasp selection. Although these customizations improved 
usability and performance during virtual prosthesis tasks, it is 
unclear whether difficulties performing some of the tasks 
were attributed to wrist movements or the hand-grasp 
required to complete the task. 

In this study, we compared offline classification errors 
and real-time performance metrics between wrist positions 
and between grasps to determine how each affects 
performance. We also determined how our proposed pattern 
recognition customization is impacted by the wrist position 
and hand-grasp required to complete a given task. We 
hypothesized that certain wrist positions and grasp patterns 
would result in real-time performance mal-effects. 
Furthermore, we hypothesized that our proposed 
customizations would suffer less from these mal-effects than 
the baseline controller. These results will help guide future 
efforts to design simple, intuitive, and responsive control 
systems for partial-hand prostheses. 

II. METHODS 

A. Experimental Protocol 

Nine non-amputee subjects participated in this study, 
which was approved by the Northwestern University 
Institutional Review Board. Informed written consent was 
obtained from all subjects prior to beginning the study. 
Subjects were a mix of novel users with no pattern 
recognition control experience, and users with prior 
experience controlling virtual prostheses. Twelve self-

adhesive bipolar surface Ag/AgCl EMG electrode pairs were 
placed on the arm and hand; eight electrode pairs covered the 
extrinsic hand muscles in the forearm, and four electrode 
pairs covered the intrinsic hand muscles located in the hand, 
and reference electrode was placed over the lateral 
epicondyle of the humerus. The hand and forearm were 
wrapped with an elastic cohesive bandage to prevent 
electrode shifts. Subjects were seated in front of a computer 
monitor displaying a custom virtual interface [see Fig. 2]. 

The experimental protocol performed by subjects is 
explained in detail in [19] and is summarized here. Briefly, to 
train the classifier, subjects were asked to initiate and 
maintain each hand posture (relaxed hand, hand open, key 
grip, chuck grip, power grip, fine pinch) with the wrist in the 
neutral position (while seated, palms facing medially). 
Subjects also performed trials in which they maintained each 
hand posture while moving the wrist along trajectories about 
each of the three degrees of freedom (wrist/flexion extension, 
radial/ulnar deviation, and pronation/supination). An example 
trajectory is as follows: the user initiated a grasp in the fully-
flexed wrist position and held this position for 2 seconds, 
then moved the wrist to the fully-extended position for 2 
seconds, waited for 2 seconds, and returned the wrist to the 
flexed position over the last 2 seconds. Each trajectory lasted 
for 8 seconds and a visual aid for the desired trajectory was 
presented to the user within a graphical user interface. While 
being guided through each trajectory, data were collected and 
labeled to be used later in offline analyses and to train 
controllers for the real-time experiment. 

During the real-time virtual prosthesis task, subjects were 
directed by a visual prompt to position their wrist in one of 
seven wrist positions: neutral, flexion, extension, radial 
deviation, ulnar deviation, pronation, or supination. A virtual 

Figure 2. Experimental setup. Subjects were seated in front of a 
computer monitor displaying a custom virtual interface. During data 
collection for classifier training, the screen displayed the grasp to be 
maintained as well as a visual guide to assist the subject in performing 
the required wrist trajectory. During the real-time experiment (shown), 
the screen displayed a virtual wrist and hand as well as text to guide 
subjects through the experiment. Once the virtual hand was revealed at 
the beginning of each trial, control of the hand was relinquished to the 
subject. The on-screen text displayed which position to maintain the 
wrist during that trial, the grasp required to complete the task, and the 
grasp the virtual hand was currently selecting. The hand turned green to 
indicate successful task completion, and turned yellow to indicate a trial 
timeout. 

 

Figure 1. Prosthetic hand control flowchart. When the hand is fully 
open, the LDA classifier must select between no movement, hand open, 
and one of N hand-grasps (grasp selection). The use of a longer feature 
extraction window reduces class variance and, therefore, increases 
inter-class separability. If a grasp has been selected and the hand is not 
fully open, all N hand-grasps are mapped to hand close, and the 
classifier selects between these three classes (grasp maintenance). 
Because all hand-grasps are mapped to a common class, a shorter 
feature extraction window can be used to reduce system delay. 
Reproduced from [19]. 



 

 

hand was then revealed on the screen, control of the hand was 
released to the subject, and they were prompted to fully close 
the virtual hand in one of four grasps: key grip, chuck grip, 
power grip, or fine pinch. Subjects had 15 seconds to 
complete the task, after which the trial was marked as “timed 
out” and the subject moved to the next task. In addition to 
controlling the virtual hand with (1) a baseline pattern 
recognition system (see Section II B), two linear discriminant 
analysis (LDA) customizations were also tested: (2) a 
classification delay after the hand was determined to be in the 
fully-open position was imposed, and (3) a majority voting 
scheme using the most common in a set of consecutive 
predictions (i.e. the mode of the predictions) as the 
classification output [10]. The baseline LDA was windowed 
with a static 250ms windowing scheme, and the two 
proposed customizations used a dual-windowing scheme that 
windowed at 500ms when the user was attempting to select a 
grasp, and 200ms otherwise. 

B. Signal Processing 

EMG signals were sampled at 1000 Hz with a 30-350 Hz 
bandpass filter using TI ADS1298 biosignal amplifier chips. 
Data were windowed with a 25ms frame increment [10]. 
Time-domain and auto-regressive features were extracted, 
and an LDA was used to classify the resulting feature vector. 
For the classification delay customization (2), predictions 
were delayed by half of the current window length, and for 
the majority voting customization (3), the majority voting 
window was equal to the current window length. 

C. Data Analysis 

In our offline analysis, the data used to train the real-time 
classifier were tested via leave-one-trial-out cross-validation, 
using classification error rate (percentage of incorrect class 
predictions) to evaluate performance. Data from all wrist 
positions and movements were used to train an LDA 
classifier, which was then tested against data collected (1) 
only in the neutral wrist position, (2) during the wrist 
flexion/extension trajectory, (3) during the radial/ulnar 
trajectory, and (4) during the wrist pronation/supination 
trajectory. Results were also broken down to determine the 
classification error rate for each trained grasp. Each of these 
tests was performed with the data windowed into (1) 250ms 
windows and (2) 500ms windows. These are the window 
lengths associated with selecting a grasp in the real-time 
experiment with either the static window or dual-window 
classifier, respectively.  

For analysis of the virtual prosthesis task, timeout rate 
and number of grasp selection attempts were used as 
performance metrics. Timeout rate was defined as the 
percentage of trials that were not completed within 15 
seconds, and selection attempts was defined as the number of 
times a subject selected a grasp from the hand open position. 
If an undesired grasp was selected for a task, the subject had 
to fully open the virtual hand to attempt to select the desired 
grasp. The timeout rate and selection attempts were 
compared across two independent factors: the wrist position 
required for a task, and the grasp required for task 
completion. 

D. Statistical Analyses 

Analyses of variance (ANOVAs) were used for statistical 
analysis of the offline experiment, with the window length 
and either tested wrist position or tested hand-grasp pattern as 
fixed factors, and subject a random factor. Pairwise 
comparisons were made using a Bonferroni correction factor, 
and the significance level was set at α=0.05. Post-hoc 
statistical analyses were performed for the real-time 
experiment. For each analysis, two independent tests were 
performed: one of the baseline pattern recognition system 
(unmodified LDA, static window), and one of a proposed 
customization (LDA with classification delay, dual 
windowing). Each was run through a two-way ANOVA, with 
either wrist task or grasp task as a fixed factor, and subject as 
a random factor. Data were normalized with a Box-Cox 
transformation [20]. Pairwise comparisons were made using a 
Bonferroni correction factor, and the statistical significance 
level for the ANOVA was set at α=0.05. 

III. RESULTS 

A. Offline Experiment 

1) Influence of the Wrist 

When comparing between wrist positions, offline 
classification error rates were lowest when classifying data  
collected when the wrist was in the neutral wrist position 
(pooled means, 4.3%) (pairwise, p<0.05) [see Fig. 3(a)]. 
Pooled error rates when classifying data collected during 
radial/ulnar deviation trajectories (11.9%) were higher than 
pooled error rates from classifying data collected during wrist 
pronation/supination trajectories (7.9%, p<0.05) and in the 
neutral wrist position (p<0.001). 

Figure 3. Offline classification error rate of real-time classifier training 
data. (a) Classification error by tested wrist trajectory. (b) Classification 
error by tested hand-grasp pattern. Error bars represent standard error. 



 

 

2) Influence of Grasp 

There were no statistically significant differences between 
classification error rates of the hand-grasps (p=0.135) [see 
Fig. 3(b)]. Pooled error rates ranged from 7.7% to 13.0%, 
averaging approximately 10% error for all grasps. 

3) Influence of Window Length 

The 500ms window associated with the dual-window 
classifier yielded a lower pooled error rate (7.7% in wrist 
analyses, 9.5% in grasp analyses) than the 250ms window 
(9.2% in wrist analyses, 11.4% in grasp analyses), though 
neither difference was statistically significant (p=0.098 and 
p=0.220, respectively).  

B. Real-Time Experiment 

1) Influence of the Wrist 

When the real-time experiment timeout rates were 
separated by required wrist position for virtual prosthesis task 
completion, there was no significant effect of wrist position 
found for the baseline pattern recognition system (p=0.575), 
classification delay (p=0.754), or majority voting (p=0.493) 
[see Fig. 4(a)]. Average timeout rates for the baseline pattern 
recognition system ranged from 16.4% to 22.2%, and the 
average timeout rates for the classification delay and majority 
voting customizations ranged from 1.4% to 2.8% and 2.7% to 
6.9%, respectively. 

Similar trends are seen with the selection attempts. The 
average number of attempts required by subjects to 
successfully complete a task did not vary significantly 
between wrist positions for the baseline system (p=0.953), 

classification delay (p=0.610), or majority voting (p=0.459) 
[see Fig. 4(b)]. Average baseline system selection attempts 
ranged from 4.0 to 4.2, classification delay selection attempts 
ranged from 2.3 to 2.4, and majority voting selection attempts 
ranged from 2.5 to 2.7. 

2) Influence of Grasp 

When separating timeout rates by the hand-grasp pattern 
required for task completion, some differences were found 
[see Fig. 5(a)]. For the baseline pattern recognition system, 
the average timeout rate was significantly higher for power 
grip (42.9%) than for fine pinch (0.0%, p<0.05). By 
comparison, average timeout rates for both the classification 
delay and majority voting customizations ranged from 0.0% 
to 7.9%, but neither was significantly affected by the grasp 
required for a task (p=0.476 and p=0.429, respectively). 

Although it appears that subjects required more selection 
attempts on average to achieve power grip (5.0) than fine 
pinch (2.7) with the baseline system, this difference is not 
significant (p=0.056) [see Fig. 5(b)]. For the classification 
delay, average selection attempts ranged between 2.2 and 2.6, 
with no significant difference found between grasp tasks 
(p=0.827); for the majority voting customization, average 
selection attempts ranged between 2.2 and 3.1, but 
differences between grasp tasks were not significant 
(p=0.171).  

IV. DISCUSSION 

Although myoelectric prostheses have recently become 
commercially available to partial-hand amputees, there are 
still many challenges to controlling these devices that must 

 

Figure 4. Influence of the wrist on virtual prosthesis task performance. 
(a) Timeout rate by required wrist position. Timeout rate is defined as the 
percentage of trials not completed within 15 seconds. (b) Selection 
attempts by required wrist position. A selection attempt is defined as the 
number of times a subject selected a hand-grasp from the hand open 
position. Error bars represent standard error. 

 

Figure 5. Influence of grasp on virtual prosthesis task performance. (a) 
Timeout rate by required grasp. Timeout rate is defined as the 
percentage of trials not completed within 15 seconds. (b) Selection 
attempts by required grasp. A selection attempt is defined as the number 
of times a subject selected a hand-grasp from the hand open position. 
Error bars represent standard error. 



 

 

be addressed before they are widely accepted. For many, 
partial-hand prostheses do not offer sufficient functionality to 
justify their purchase and use. A major contributor to this is 
their control method; because these devices are typically 
controlled in the same manner as transradial prostheses, they 
do not take into account control challenges of partial-hand 
amputees, including facilitating wrist movement and the need 
for multiple prehensile patterns. Our research has focused on 
this issue by developing training methods and control 
algorithms specifically for partial-hand prostheses [19].  

In this study, we further evaluated these LDA 
customizations to show how their performance depends on 
both the wrist position and the hand-grasp pattern required 
for a given task. In the offline evaluation of subject training 
data, we show that the wrist position can affect classification 
error, but that the classified grasp does not have a discernable 
effect on the error. However, when considering results from 
the real-time experiment, we show that the wrist position 
required to complete tasks does not have a clear effect on 
either the timeout rate or the number of selection attempts 
made by the user. Instead, the required grasp significantly 
impacts the performance of the user, especially when 
controlling a virtual prosthesis with the baseline LDA. Both 
the classification delay and the majority voting 
customizations reduced timeout rates and selection attempts 
when compared to the baseline LDA [19]. In doing so, these 
customizations also drastically reduced the effect of desired 
grasp on performance; grasps that users had little trouble 
completing (such as fine pinch) only experience a small 
improvement, whereas grasps that users found difficult to 
select (such as power grip) experienced a much greater 
improvement, even so far as to match the performance of fine 
pinch. 

The reason that the grasp required to complete a task had 
a greater effect than the required wrist position is likely 
because hand posturing is more difficult to do repeatedly. 
Pattern recognition classification requires novel data to be 
similar to the data on which the classifier initially trained. 
However, if a user cannot easily perform the same grasp with 
minimal variation, the predictive power of the classifier is 
expected to deteriorate. In addition to variations while the 
hand is fully-closed, there is likely greater variation while 
moving from an open or rest posture to the desired grasp. By 
implementing the classification delay and majority voting 
techniques, users are given an opportunity to complete this 
hand movement before a grasp prediction is made. This, in 

turn, allows users’ EMG to “settle” and reduces its variation, 
thereby improving its discrimination from other grasps. This 
effect is illustrated by the lack of significant differences in 
timeout rate and selection attempts between different grasps. 

Although this study focuses on partial-hand prostheses, 
these results may be transferable to multi-articulate hands 
designed for transradial prostheses as well. At the transradial 
level, the wrist can no longer move and interfere with grasp 
predictions (with the exception of simultaneous control of the 
wrist and hand movements of a transradial prosthesis [21]), 
but EMG also can no longer be collected from the intrinsic 
hand muscles, which would normally reduce classification 
errors of grasps [22]. We expect that our proposed 
classification delay and majority voting techniques would 
improve a user’s ability to perform tasks requiring a specific 
grasp; however, this remains to be tested. 

V. CONCLUSION 

In order to provide the greatest functionality, partial-hand 

amputees must be able to fully control their prosthesis. 

Preserving the mobility of the wrist is a key design 

consideration for creating and controlling partial-hand 

prostheses. Additionally, permitting control of multiple hand-

grasp patterns allows for greater flexibility and ability when 

performing daily tasks. We have shown that providing 

classifiers examples of grasps in multiple wrist positions can 

improve the control system’s ability to discern grasps in 

different wrist positions in real-time, but additional steps are 

required to facilitate hand-grasps that users find difficult to 

execute. Our proposed LDA customizations were shown to 

reduce the variability of performance based on grasps 

required to perform a task, therefore making previously 

difficult grasps viable options for performing daily tasks and 

allowing for a greater flexibility in how these tasks are 

completed. 
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